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third harmonic are needed to account for the behaviour of the
vertical velocity component in the midplan of the cell. We
have searched for the presence of the fourth and fifth
harmonics, but could not establish their presence. We
checked also that there was no significant velocity component
along ¥y le. the velocity field was bidimensional. The
variations of W' and W* with respect to « are given on Fig.
3 and Table 2, for a value of Ry = 11400. We see that the
amplitude of the fundamental mode W' increuses with .
when W is decreasing ; so the amount of anharmonicity is
greater when the wavelength is smaller* (see Fig. 2). From an
other point of view, we checked the variation of W, and W,
with Ra for the structure with ¢ = 2.57 und found approxi-
matively the expected power law dependences.

On the Fig. 3 {and Table 2), we give also the velocity
amplitudes deduced from the calculated values W*'' and
W®3 These ones are represented by striped areas, their
width being given by the experimental uncertainty on D
and Ra. Furthermore, we draw for comparison the values
deduced from Busse’s results using a Galerkin procedure.
The corresponding amplitudest are not precise for they are
obtained from an estimate of parameters taken from a
published diagram (uncertainty +5°,).

In conclusion, the dependence with respect to « of the
measured amplitude of the fundamental mode is well de-
scribed by the perturbative method. The higher values
deduced from Busse's calculations can be mainly explained
by the fact that his parameter which gives the funda-
mental amplitude does not follow the power law in [{Ru
~Ra }/Ra.]"% On the contrary, for the third harmonic
amplitudes, the agreement between the experimental points
and the values calculated from Busse 1s very good when the

*We can notice that the total mass flux carried by
convection and deduced from velocity profiles is decreasing
when A increases.

+There is a misprint in Busse’s paper | 3] since the values of

the coefficients b ,, reported in its Fig, 3 are not coherent with
the results of the Table I. They become consistent if we drop a
factor m in the value of b
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perturbative method gives lower values and o different
variation law with a.
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NOMENCLATURE
Wy, dy. dy, 4, turbulence structure paramelers.
" assumed constant

L, length scale defined by equation (2):

I, mixing length = —"2/(QU ¢y);

Pr,, turbulent Prandtl number ;

;3 turbulent kinematic pressure fluctuation
q°, turbulent kinetic energy (=u> + 2 +w?):
T, difference between local and mean and free

stream ambient temperatures:

[ER focal mean velocity
u, 1y, velocity Huctuationsin x, vand ¢
directions

— i, Reynolds shear siress;

~ufl. longitudinal heat flux:

U friction velocity:

RN normal heat flux;

X, v. o, coordinates in longitudinal {streamwise},

normal (to wall} and spunwise directions
respectively:
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X spatial coordinates, identical to x, y

and z when i = 1, 2, 3 respectively.
Greek symbols

, thermal diffusivity ;

B, constant defined by equation (8);

o, momentum boundary layer thickness
(99.5%; of free stream velocity);

dps thermal layer thickness (99.5%, of
difference between wall and free stream
temperature);

0, temperature fluctuation;

0., friction temperature, equal to ratio of

thermometric wall heat flux to friction
velocity;
kinematic viscosity.

EmpirICAL models of transport equations for the turbulent
heat flux are currently being used in calculation methods for
both laboratory and planetary turbulent boundary layers
[1-5]. In the absence of buoyant generation, the differential

equation for 974, may be written 6] as
é — —eT —oU, ¢ ——
U,— Ou; +uu; — + Oy — ——(u,,0u;)
*ox, "V ox; fox,  Oxg
—_—
production

advection diffusion

P -
+0F VIOV, =0 (1)
ax; .

dissipation

The last two terms may be interpreted as dissipation terms
and are expected to be small by virtue of isotropy of the fine
scale motion. When the flow is approximately self-preserving,
advection and diffusion terms are expected to be small in
comparison with the production term so that the
temperature—pressure gradient correlation would then repre-
sent the major destruction or sink term for fu;. We do not yet
have an explanation for the physical processes that are
represented by the temperature—pressure gradient cor-
relation term but it is obviously important to model this term
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Fi16. 1. Budget of v in heated part of the flow at x/3, = 42.9.
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accurately if equation (1)is used in a calculation scheme. The
simplest model is of a “return to isotropy” form, which
expresses a tendency for the pressure fluctuations to reduce
any correlation between 8 and u;, and is represented by

o _q
00— =—

0x; L
where only turbulence terms are included. More general
proposals, reviewed in [ 7], include mean strain and buoyancy
effects in the RHS of equation (2). The length scale L is
expected to be proportional to a length scale representative of
the energy containing eddies. Donaldson [1] chose a value of
L (=0.156 in the outer layer) by optimising agreement of his
method with boundary-layer results. In [2] and [3], 89p/0x; 1s
assumed to be proportional to fu;/t, where T is an integral
time scale (set by the model) and where the proportionality

constant is determined by forcing the fv equation to satisfy
observations in the neutral surface layer of the atmosphere. In
the present note, 63p/dx; is estimated from an experimental
budget of fu; in an approximately self-preserving thermal
boundary layer and the resulting values of L are compared
with those chosen by Donaldson [1] and others.
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F1G. 2. Budget of 0 in heated part of the flow at x/d, = 42.9.

Budgets of heat fluxes v0 (in direction normal to the wall)

and uf (longitudinal direction ) have been measured [8,9]ina
thermal layer which was obtained by subjecting a fully
developed boundary layer to a step change in surface heat
flux. Upstream of the step the surface heat flux was zero while
downstream of the step, the magnitude of the constant heat
flux is small enough for temperature to be considered as a
passive contaminant of the flow. At the step, the velocity
boundary layer is self-preserving with a thickness é, of 4.5 cm
and a Reynolds number Re, (U,0,/v) of approximately 3000
(U, =~ 9.45m/s). Fluctuations u, v and 8 were obtained with a
combined X-wire/single wire probe arrangement. A minia-
ture DISA X-wire (5pm dia. Pt coated tungsten wire)
operated by two channel of DISA 55M01 constant tempera-
ture anemometers was used to measure u# and v. The
temperature fluctuation & was measured with a 1 um dia.
platinum cold wire at a distance of about I mm from the
geometrical centre of the X-wire. This cold wire was operated
by a constant current anemomeéter with the value of the
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current set at 0.2 mA. Contamination of the X-wire signals by
0 was removed using the method described in [10]. Budgets of
v0 and u shown in Figs. 1 and 2 respectively were obtained at
a distance of 4299, downstream of the step, where the
thermal layer is nearly self-preserving but with a thickness &,
cqual to only 66% of the local velocity boundary-layer
thickness & (~8.64 cm). In Figs. 1 and 2 all terms in equation
(1 were normalized by &, the friction velocity u, and the
friction temperature . while the averaging was performed
only during those periods for which the flow was heated. The
results of Figs, 1 and 2 clearly indicate that the
temperature- pressure gradient correlation effectively coun-
teracts the production term. All other terms in egquation (1}
are one order of magnitude smaller than the two major terms,
At very small distances from the step budgets of ufl and 0
given in [8] show that the diffusion term may become
comparable with the temperature~pressure gradient cor-
relation.

Equation {1) may be approximated, for ## in a boundary
layer with neglizible advection and dissipation, by

2

= - ol 3)

With the assumption that ? = a,{ —uav). with ¢, assumed
constant, equation (3) may be rewritien. after some manipu-
lation, as
L 1 4
o . (4
Iatia, Pr,
where I[ = —~iie' 2(@U/oy)" '] is the mixing length, Pr, is the
turbulent Pmndtl number (¢ T8y z()(ﬂU/m )and «, is the

parameter ~utig®. Witha, = 015110, ~ 1.5 [7] and Pr,

~ 0.9 [12, 13], L is approximately equal to twice the mixing
length. In thc. case of uff, equation {1 ) may be approximated by
aut o ar qul N _
el -+ Ut = e O, (3)
oy it L

With the assumption that —ull = «,0fl, equation {5) may be
recast as

1. a3

- = Ty (I Pra” ' (6}

[oa?
With vy = 1.5, 4 value suggested by the measurements in [ 13]
and [14], equdtmn (6) yields L = 2i, in agreement with the
result obtained from equation (3). Launder [7] has made a
comprehensive review of the proposed values for the coef-
fictent ¢, in the model

Pz = 7N
(R
where ¢ is the dissipation of turbulent energy. Assuming that
pc"{} ey x> — 00 /60X, (7) may be expressed as
i) —APV =2¢,,0%? ! — i w0 (8)
[2Y i

where L. is the dissipation length scale ( —%¢)%* » With L,
~ 1 [11], equation (8) yields L = 2.5/ when the value of
¢ (= 3.4), {as recommended by Launder [ 7]} is used.

It is worth noting that the turbutent Prandt! number Pr,
may also be written as

al*B
pro= 42 )
[

where the turbulence structure parameter q,, introduced in
[15]. is defined as

v
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and B is the non-dimensional ratio

n;‘?; N

introduced in [13, 16] and found 1o be equal 1o 1.3 vver the
major part of the layer. With «, == 0.64, as given by results in
[13] and [14], equation (9) yields Pr, = 0.9, which 15 con-
sistent with our chosen valuc of Pr,. 1t should also be noted
thatif the effect of the mean strain mte isincluded in equation
{21in the form {17, 4]

[

it i’n =1 fu; + [iii ", i
X . 0,
equation (6) 1s modified to
L = ”1;(1 S L (i
i u§ - '

With f§ = —0.5, the value used in [ 17], equation {11} yields «
value of the ratio L/l which is 38, higher than that given by
equation (6). Launder { 7] has already noted that the value of
¢, does not depend significantly on the inclusion of the me:n
strain rate effect in equation (2).
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F1G. 3. Distribution of length scale L. defined in equation {2}

It should finally be mentioned that the validity of the result
L ~ 2 ought to extend over the major part of the boundary
layer since the turbulence structure parameters oy, «y, i, i,
and the non-dimensional ratios Pr, or B are approximately
constant except in the region very near the wall and near the
outer edge of the layer. Values of L {Fig 3}, derived from the

experimental budget of ufl for the streamwise stations of the
thermal layer, are in fair agreement with a line of slope 2w {wis
the von Karman constant) in the logarithmic region of the
Jayer and with a constant value of 0.18 in the region 0.3 < 1.8
< 0.8. This value of 0.18 is approximately twice the vatue of
the mixing length / reported by Bradshaw [11] in the same
region of the layer.
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